مبانی نظری و پیشینه تحقیق پیش بینی و مد لهای پیش بینی

مبانی نظری و پیشینه تحقیق پیش بینی و مد لهای پیش بینی

دسته: علوم انسانی

بازدید: 1 بار

فرمت فایل: docx

حجم فایل: 172 کیلوبایت

تعداد صفحات فایل: 42

  • مبانی نظری و پیشینه تحقیق پیش بینی و مد لهای پیش بینی
  • مبانی نظری و پیشینه تحقیق پیش بینی و مد لهای پیش بینی
  • مبانی نظری و پیشینه پیش بینی و مد لهای پیش بینی

[...دانلود خواهم کرد...]

موارد مشابه را حتما بررسی فرمایید:

مبانی نظری و پیشینه تحقیق پیش بینی و مد لهای پیش بینی

توضیحات:

فصل دوم مقاله کارشناسی ارشد (پیشینه پژوهش)

همرا با منبع نویسی درون متنی فارسی و انگلیسی کامل به شیوه APA جهت استفاده فصل دو مقاله

توضیحات نظری در مورد متغیر و همچنین پیشینه در مورد متغیر مربوطه و متغیرهای مشابه

رفرنس نویسی و پاورقی دقیق و مناسب برای فصل دو مقاله

منبع: دارد (به شیوه APA)

نوع فایل: WORD و قابل ویرایش

قسمتی از مبانی نظری متغیر:

در یک تعریف کلی، فرایند پیشگویی شرایط و حوادث آینده را پیش­بینی نامیده و چکونگی انجام این عمل را پیش­بینی کردن نامیده می­شود (بوکوتا، 2002).

هر سازمانی جهت تصمیم­گیری آگاهانه باید قادر به پیش­بینی کردن باشد. از آنجایی که پیش­بینی وقایع آینده در فرآیند تصمیم­گیری در سازمان نقش عمده ای را ایفا می کند، پیش­بینی کردن برای بسیاری از سازمانها و نهادها حائز اهمیت بالقوه­ای است. بنابراین بیشتر تصمیمات مدیریت در تمام سطوح سازمان به طور مستقیم و یا غیر مستقیم به حالتی از پیش­بینی آینده بستگی دارد.

در مدیریت استراتژیک، پیش­بینی شرایط عمومی اقتصاد، نوسانات قیمت و هزینه­ی تغییرات تکنولوژی، رشد بازار و امثال آن در ترسیم آینده بلند­مدت شرکت موثر است. به همین دلیل است که کنترل هر فرایند، منوط به پیش­بینی رفتار دوره فرآیند در آینده است. برای مثال ممکن است که در یک دوره فرآیند دستگاهی بیش از حد معین کار کند و تعداد اقلام معیوب تولید شده افزایش یابد. بنابراین برای شناسایی به موقع این نقص باید از روش های مناسب پیش­بینی استفاده نموده و نسبت به تصحیح و یا حذف آن با توجه به شرایط موجود اقدام نمود (ریفنس، 1997).

مدل ­های پیش ­بینی

ابزارهای عینی و ریاضی که برای پردازش و تجزیه و تحلیل داده­ها مورد استفاده قرار می­گیرند مدل­های پیش­بینی نامیده می­شوند. به عبارت دیگر، الگویی از یک واقعیت که ساده و کوچک شده و روابط بین متغیرهای آن واقعیت یا سیستم را نشان می­د­هد، مدل خوانده می­شود. بنابراین، هنگامی که متغیرهای مورد نظر به صورتی منظم، ساده و قابل فهم در جهت اهداف پیش­بینی در کنار یکدیگر قرار گرفتند و الگویی از روابط را بوجود آوردند، یک مدل پیش­بینی شکل می­گیرد.

سری ­های زمانی [1]

به روند مقادیر یک متغیر در طول زمان که به صورت دوره­های زمانی با فواصل معین و یکسان تنظیم شده­اند سری زمانی گفته می­شود. در تحلیل سری زمانی وضعیت تغییرات یک متغیر در گذشته مورد بررسی قرارگرفته و به آینده تعمیم داده می­شود. به طور کلی مدل­هایی که در تحلیل سری­های زمانی مورد استفاده قرار می­گیرند به دو دسته مدل­های خطی و غیر­خطی تقسیم می­شوند.

مدل­های خطی مانند مدل­های باکس جنکینز [2] و یکنواخت سازی نمایی برای سری­های زمانی خطی مناسب هستند، ولی در مدل­سازی سری­های زمانی مالی و غیر­خطی با مشکل مواجه می­شوند.

مدل­های غیر­خطی از قبیل مدل­های غیر­کاهنده آستانه­ای، یک تابع غیر­خطی خاص و از پیش تعیین شده را پیش­بینی می­کنند. به عبارتی تابع خطی مورد استفاده در این روش­ها مشخص است. نوع دیگر مدل­های غیر خطی شبکه­های عصبی مصنوعی هستند که می توانند هر تابعی را تخمین بزنند و فرایندهای با رفتار ناشناخته را مدل نمایند.

[1] -Time series

[2] -Box-Jenkins

[...دانلود خواهم کرد...]